Selective oxidation on metallic carbon nanotubes by halogen oxoanions.

نویسندگان

  • Seon-Mi Yoon
  • Sung Jin Kim
  • Hyeon-Jin Shin
  • Anass Benayad
  • Seong Jae Choi
  • Ki Kang Kim
  • Soo Min Kim
  • Yong Jin Park
  • Gunn Kim
  • Jae-Young Choi
  • Young Hee Lee
چکیده

Chlorine oxoanions with the chlorine atom at different oxidation states were introduced in an attempt to systematically tailor the electronic structures of single-walled carbon nanotubes (SWCNTs). The degree of selective oxidation was controlled systematically by the different oxidation state of the chlorine oxoanion. Selective suppression of the metallic SWCNTs with a minimal effect on the semiconducting SWCNTs was observed at a high oxidation state. The adsorption behavior and charge transfer at a low oxidation state were in contrast to that observed at a high oxidation state. Density functional calculations demonstrated the chemisorption of chloro oxoanions at the low oxidation state and their physisorption at high oxidation states. These results concurred with the experimental observations from X-ray photoelectron spectroscopy. The sheet resistance of the SWCNT film decreased significantly at high oxidation states, which was explained in terms of a p-doping phenomenon that is controlled by the oxidation state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CaH2-assisted low temperature synthesis of metallic magnetic nanoparticle-loaded multiwalled carbon nanotubes.

We studied synthesis of Ni or Fe nanoparticle-loaded multiwalled carbon nanotubes (MWCNTs) by pyrolyzing metal organic salts with CaH2, a very strong reductant. The use of CaH2 lowered the formation temperature of MWCNTs down to 400 °C without the use of toxic halogen-containing precursors and assistance of plasma.

متن کامل

Voltammetric Determination of Penicillamine Using a Carbon Paste Electrode Modified with Multiwall Carbon Nanotubes In the Presence of Methyldopa as a Mediator

A multiwall carbon nanotubes-modified carbon paste electrode (MWCNTs/MCPE) wasfabricated and used to study the electrooxidation of penicillamine (PA) by electrochemicalmethods in the presence of methyldopa (MDOP) as a homogeneous mediator. Theelectrochemical oxidation of PA on the new sensor has been carefully studied. The kineticparameters such as electron transfer coefficient, α, and catalyti...

متن کامل

Voltammetric Determination of Penicillamine Using a Carbon Paste Electrode Modified with Multiwall Carbon Nanotubes In the Presence of Methyldopa as a Mediator

A multiwall carbon nanotubes-modified carbon paste electrode (MWCNTs/MCPE) wasfabricated and used to study the electrooxidation of penicillamine (PA) by electrochemicalmethods in the presence of methyldopa (MDOP) as a homogeneous mediator. Theelectrochemical oxidation of PA on the new sensor has been carefully studied. The kineticparameters such as electron transfer coefficient, α, and catalyti...

متن کامل

Growth of semiconducting single-walled carbon nanotubes by using ceria as catalyst supports.

The growth of semiconducting single-walled carbon nanotubes (s-SWNTs) on flat substrates is essential for the application of SWNTs in electronic and optoelectronic devices. We developed a flexible strategy to selectively grow s-SWNTs on silicon substrates using a ceria-supported iron or cobalt catalysts. Ceria, which stores active oxygen, plays a crucial role in the selective growth process by ...

متن کامل

Synergistic Effect of ZnO Nanoparticles and Carbon Nanotube and Polymeric Film on Electrochemical Oxidation of Acyclovir

A simple and selective carbon paste electrode has been developed for the electrochemicaldetermination of acyclovir (ACV). This electrode was designed by incorporation of multiwalledcarbon nanotubes (MWCNTs) and ZnO nanoparticles into the carbon paste matrix,and then poly (o-aminophenol; OAP) film were subsequently electropolymerized on it. Thesurface structure of nanoparticles were characterize...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 130 8  شماره 

صفحات  -

تاریخ انتشار 2008